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Recently polysiloxane filled with well-dispersed silica
(SiO2) nanoparticles has been an increasing research
focus for the purpose of a high level of reinforcement
for silicone rubber [1]. It is generally accepted that the
reinforcing effects not only result from the filler net-
work [2] induced by aggregation of filler particles, but
also depend on parameters such as particle size, struc-
ture, and the degree of surface interaction. Addition-
ally, it is well-known that incorporation of fillers into
polymers will cause a considerable change in rheolog-
ical behavior and viscoelastic properties, both high-
lighting the secondary structure of the filler clusters.
In this study, two types of SiO2 nanoparticles with sim-
ilar particle size and surface chemistry structure, i.e.,
SiO2 aerogels and colloidal SiO2 spheres were added
into poly(methylvinyl)-siloxane (PMVS). Our ultimate
objective is to understand the effect of microstructure
of SiO2 nanoparticles on the dynamic rheological prop-
erties of PMVS/SiO2 system. To our knowledge, few
reports concerning these aspects have been published.

The PMVS samples were commercially available
products (M̄w = 600 000, M̄n = 355 000). SiO2 aero-
gels were synthesized using a super critical drying tech-
nique, while colloidal SiO2 spheres were prepared by a
conventional sol-gel process [3] and the TEM observa-
tion for them were shown in Figs 1 and 2 respectively.
The typical properties of the two types of SiO2, to-
gether with other commercial SiO2 powders, are given
in Table I. A widely used bifunctional organosilane,
i.e., bis(3-triethoxysilylpropyl) tetrasulfane (TESPT),
was used to aid the dispersion and distribution of SiO2.
The formulation for the composites was PMVS, 100;
Silica, 40; Diphenyl silandiol, 3; and TESPT, 6. The
mixing process was conducted using a two-roll mill for
15 min at room temperature. The dynamic mechan-
ical measurements were performed on an advanced
rheometric expansion system (ARES) using parallel
plate geometry model (radius = 25 mm and thickness
= 2 mm) at 25 ◦C. The strain sweep test was con-
ducted with a frequency of 0.1 rad · s−1 by varying the
strain from 0.01 to 100%; the frequency sweep test
was performed within the frequency range from 100 to
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0.01 rad · s−1. All tests were done in the linear viscoelas-
tic region.

The relationship between dynamic storage modulus
G ′ and strain for SiO2/PMVS systems was presented
in Fig. 3. As can be seen, the apparent decrease of
G ′ at critical strain amplitude (γ ), i.e., the so called
Payne effect [2], was prominently enhanced upon in-
creasing the surface structure from non-porous SiO2
spheres to porous SiO2 aerogels. Meanwhile, in addi-
tion to an elevated level of G ′, the linear viscoelastic
region was also remarkably shortened, in order of the
strain, γ1 < γ2 < γ3. The phenomenon mentioned can
be interpreted on the basis of the formation and its de-
struction of filler aggregates network [4]. It seems that
SiO2 nanoparticles with higher surface structures are
more prone to form a strong secondary filler structure,
though with a weakened ability to resist deformation.

Fig. 4 presents the frequency dependency of G ′ at
25 ◦C and 0.1 rad · s−1 for PMVS filled with SiO2
nanoparticles of different structure. It is apparent that
the composites containing inner-porous SiO2 aerogels
display an extraordinary frequency-independent rheo-
logical behavior in the lower frequencies region. Ac-
cording to our previous work [5–7], the Newtonian
viscoelastic plateau in the terminal region can be at-
tributed to the existence of filler network. In contrast,
the composites filled with colloidal SiO2 spheres, which
possess similar surface areas to that of SiO2 aerogels,
present a slight deviation from the linear rheologi-
cal equation log G′ ∼ 2 log ω [5–7], indicating an
agreement with the results as shown in Fig. 3.

TABLE I Typical properties of SiO2 with different structure

Colloidal Silica Silica
Property silica spheres aerogels powders

N2(BET) Surf. area (m2/g) 280 416 26
Elementary particle diameter (nm) 20 20 200–450
DBP adsorption (10−6m3/100 g) 224 252 160
CTAB ads. Surf. area (m2/g) 126 82 –
PH (4% Suspension in H2O) 6.7 6.8 6.6
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Figure 1 TEM of SiO2 aerogels.

Figure 2 TEM of colloidal SiO2 spheres.

Figure 3 Strain dependence of Storage modulus (G ′) at 25 ◦C and 0.1 rad · s−1 for PMVS filled with SiO2 nanoparticles with different surface
structure.
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Figure 4 Frequency dependence of storage modulus (G ′) at 25 ◦C for
PMVS filled with SiO2 nanoparticles with different surface structure.

It is generally, believed that the filler aggregate net-
work is formed directly through filler-filler interactions
and indirectly through polymer chains, bridging two
different particles or entanglements of different poly-
mer chains adsorpted onto two adjacent particles [2, 8].
According to the discussion above, it is predicted that
to someextent the promoted filler networks result from

the adsorption of PMVS chains onto the surface of sil-
ica nanoparticles, since the filler-filler interactions are
considerably reduced by treatment with TESPT. Fur-
thermore, the destruction of filler network against de-
formation may involve in desorption of polymer chains
from the SiO2 particles.
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